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Abstract. Hydrological modelling in the Canadian Sub-Arctic is hindered by sparse meteorological and snowpack data. 

Snow Water Equivalent (SWE) of the winter snowpack is a key predictor and driver of spring flow, but use of SWE data in 

hydrological applications is limited due to high uncertainty. Global re-analysis datasets that provide gridded meteorological 

and SWE data may be well suited to improve hydrological assessment and snowpack simulation. To investigate 

representation of hydrological processes and SWE for application in hydropower operations, global re-analysis datasets 15 

covering 1979-2014 from the European Union FP7 eartH2Observe project are applied to global and local conceptual 

hydrological models. The recently developed Multi-Source Weighted-Ensemble Precipitation (MSWEP) and the Watch 

Forcing Data applied to ERA-Interim data (WFDEI) are used to simulate snowpack accumulation, spring snowmelt volume 

and annual streamflow. The GlobSnow-2 SWE product funded by the European Space Agency with daily coverage from 

1979-2014 is evaluated against in-situ SWE measurement over the local watershed.  Results demonstrate the successful 20 

application of global datasets for streamflow prediction, snowpack accumulation and snowmelt timing in a snowmelt driven 

Sub-Arctic watershed. The GlobSnow-2 product is found to under-predict late season snowpack over the study area, and 

shows a premature decline of SWE prior to the true onset of the snowmelt. Of the datasets tested, the MSWEP precipitation 

results in annual SWE estimates that are better predictors of snowmelt volume and peak discharge than the WFDEI or 

GlobSnow-2. This study demonstrates the operational and scientific utility of the global re-analysis datasets in the Sub-25 

Arctic, although knowledge gaps remain in global satellite based datasets for snowpack representation.  

 

Keywords: Hydrology, SWE, Sub-Arctic, snowmelt, cryosphere, GlobSnow, eartH2Observe, MSWEP, WFDEI, global 

dataset, WFLOW, HBV 
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1 Introduction 

Snowpack accumulation and melt are the main drivers of hydrology and peak flow events in high latitude (>60
0
N) 

watersheds. Snow Water Equivalent (SWE) stored in the winter snowpack is the key contributor and predictor of spring and 

summer streamflow (Liu et al., 2015).  In-situ measurement of SWE can provide valuable information to operational water 5 

managers, but data collection is challenging in remote high latitude watersheds, and uncertainty in maximum annual SWE 

remains a key constraint in hydrological forecasting (Larue et al., 2017).  In Northern Canada, uncertainty in SWE 

measurement and a lack of developed hydrological modelling tools result in high uncertainty in the prediction of snowmelt 

driven flood events, leading to infrastructure risk and hindering operational water management. Climate change is also 

shifting the hydrology regime at high latitudes, with Global Circulation Models and observational trends indicating a 10 

reduction in spring snowpack duration, although the trend in SWE is less clear (Brown and Mote, 2009; Rees et al., 2014). 

This will increase risk to hydroelectric facilities, mining operations and local communities as rapid spring snowmelt, rain-on-

snow events and variable precipitation patterns that cause flooding become more severe (AMAP, 2012; McCabe et al., 2007; 

National Research Council, 2007).  

 15 

SWE measurements from ground and remote-sensing sources have high uncertainty for hydrological application. Although 

field measurement of SWE can be accurate at point locations, these provide only limited spatial and temporal coverage. 

Precipitation gauge measurements to quantify snowfall at high latitudes have high uncertainty due to the scarcity of 

meteorological stations, short duration of active stations and systematic measurement error (Devine and Mekis, 2008; Mekis 

and Vincent, 2011; Sugiura et al., 2006). Remote sensing is used to monitor snow on a global scale and measurement of 20 

Study Highlights: 

 

● Global re-analysis datasets from the European Union FP7 eartH2Observe project are applied to a 

distributed, conceptual hydrological model of a snow-melt driven watershed in the Canadian Sub-Arctic. 

● Global re-analysis datasets have clear benefit to improve the period of record and model performance in 

hydrological assessment. However, estimates of snowfall quantity and resulting modelled SWE have high 

uncertainty for prediction of snowmelt volume. 

● Maximum annual SWE generated from MSWEP is more predictive of snowmelt volume and peak 

discharge than WFDEI forcing or GlobSnow-2 SWE. 

● Methods applied in the study are readily applicable for hydrological modelling and assessment in data 

sparse snowmelt driven watersheds in the Sub-Arctic. 
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snow depth with passive microwave has advantages of frequent re-visit times, long-term data records and large spatial extent 

of data collection (Nolin, 2011). GlobSnow-2 provides a long term (1979-2014) daily record of SWE over the Northern 

hemisphere (Luojus et al., 2014).  However, passive microwave measurement of SWE is limited for the measurement of 

deep or wetted snow packs, relies on estimates of density, and tends to underestimate SWE in tundra environments (Rees et 

al., 2007).  5 

 

Global reanalysis data products, which integrate multiple data sources, are well suited to provide meteorological data at high 

latitudes due to complete spatial and extended temporal coverage. Research into the reliability of re-analysis products at high 

latitudes is, however, limited for precipitation and SWE due to a lack of reliable comparison data (Mudryk et al. 2015; Wong 

et al., 2016). In this study a local distributed, conceptual hydrological model using a simplified snow accumulation and melt 10 

routine is forced with eartH2Observe meteorological data to simulate SWE and catchment discharge.  

 

Meteorological datasets generated as part of the eartH2Observe project have been used to force global hydrological models 

(Schellekens et al., 2016). These global hydrological models can be used to improve understanding of water resources in 

regions like the Sub-Arctic where information is lacking, but the models have large uncertainties in part due to 15 

simplifications of physical processes (Bierkens and Van Beek, 2009; van Dijk et al., 2014). This study examines the 

application of global re-analysis data products for hydrological modelling and representation of SWE in the Snare Watershed 

in the Canadian Sub-Arctic. The available datasets hold great potential to allow accurate discharge modelling for Sub-Arctic 

watersheds and development of more advanced modelling systems. This has real and practical relevance for operational 

water management at high latitudes and provides a basis for hydrological forecasting and data assimilation to further 20 

improve model performance.  

 

The three main goals of this paper are to:  

1) Determine the skill of a local distributed, conceptual (in each cell) hydrological model for a snowmelt driven, high 

latitude watershed forced with long-term meteorological re-analysis data developed in the eartH2Observe project. 25 

2) Assess the representation of SWE in both the local and global scale models, and compare to the GlobSnow-2 daily 

SWE product as well as available long-term records of snowpack surveys. 

3) Determine the predictive capacity of SWE measurement from in-situ snowpack surveys, GlobSnow-2 SWE as well 

as local and global hydrological models for snowmelt volume and peak discharge rates. 

2 Study Area and Context 30 

The Snare Watershed is located in the Northern extent of the Mackenzie River Basin in Canadian Sub-Arctic.  The 

watershed covers an area of roughly 14,000 km² above a cascade of 4 hydropower stations as depicted in Figure 1 (NTPC, 
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2013). The Snare Watershed is typical of many watersheds across Northern Canada where temporal and spatial coverage of 

meteorological data is very sparse, but where historic discharge gauging records are available. 

 

The Snare Watershed has low topographic relief and is characterized by low rolling hills of exposed bedrock with 

depressions from glacier scouring forming wetlands, shallow lakes and streams (ECG, 2008). The Southern extent of the 5 

watershed is boreal forest, while the Northern extent is above the treeline and is covered mostly by shrub and sedge tundra 

(Government of Canada, 2013). Annual precipitation is generally low and in the range of 200 to 500 mm and temperatures 

are below 0
o
C for extended periods in the winter months (ECG, 2008).   

 

Several meteorological stations have been installed in the Snare Watershed, however precipitation records are very short, 10 

with a maximum duration of 3 years. Gauge measurement of snowfall is known to have systematic underestimation and 

large bias correction factors (80-120%) are required for snowfall at high latitudes, though factors in the boreal/tundra region 

of the Snare Watershed may be closer to only 20% (Mekis and Vincent, 2011; Yang et al., 2005). Snowpack accumulated 

from winter snowfall is highly spatially variable in depth and SWE with lower accumulation over lake and plateau areas 

(Rees et al., 2014). Snowfall measurements at high latitudes are particularly difficult to verify due to the sublimation effects 15 

on precipitation totals (Mekis and Hogg, 1998).   

 

Sublimation, the direct conversion of snow particles to vapour and a major factor in removing snow from tundra areas 

(Marsh et al., 1995), and along with wind redistribution is a dominant factor in the spatial variability and quantity of SWE. 

Sublimation estimates in the Sub-Arctic boreal forest and tundra regions vary considerably in a general range from 10-50% 20 

of total snowfall (Dery and Yau, 2002; Liston et al., 2002; Marsh et al., 1995; Pomeroy et al., 1999.; Pomeroy et al., 1997). 

Direct measurement of sublimation is very difficult, so values are more often determined through water balance assessment 

(Liston and Sturm, 2004).  

 

Improved modelling of streamflow and SWE has a direct benefit for the operation of active hydropower facilities in the 25 

Snare Watershed. Current approaches for hydropower operations in the Snare Watershed use ground SWE measurements 

and analogue hydrographs to anticipate discharge. The system planner uses anticipated streamflow to determine whether to 

hold or spill water, and whether it is necessary to order diesel should hydroelectric generation fall short and needs to be 

offset using generators. This forecasting approach is limited as it cannot incorporate additional information such as changing 

temperature regimes, antecedent water storage and meteorological forecasts.  In this study the operational context of the 30 

Snare Hydro System is used to demonstrate that global datasets are not only useful for broad scale assessment, but can be 

applied for accurate discharge modelling and development of a hydrological forecasting system.  
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3 Methodology 

3.1 Hydrological Models 

3.1.1 WFLOW-HBV Model 

WFLOW-HBV is a based on the conceptual HBV-96 algorithm and is developed as a distributed hydrological modelling 

platform using the PCRaster python framework (Karssenberg et al., 2010; OpenStreams, 2016b). WFLOW-HBV includes a 5 

simplified snow accumulation and melt routine based on the degree-day method and kinematic wave approximation for 

routing (Bergström, 1992). The snow routine does consider snowpack melt and refreezing, but not moisture loss from the 

snowpack (sublimation) and wind redistribution. Several attempts have been made to improve on the snowmelt modelling of 

the HBV model, but it has been found that inclusion of more advanced routines and additional input data have had only 

limited improvement of results (Lindstrom et al., 1997). The WFLOW-HBV model is highly parameterized and requires a 10 

structured approach to calibration to achieve suitable streamflow and physical process representation. 

 

A Python-based framework for optimization, pyOpt, was implemented for calibration of the WFLOW-HBV model (Perez et 

al., 2012). Single objective, constrained parameter optimization of Nash-Sutcliffe Efficiency (NSE) was performed using the 

Augmented Lagrangian Harmony Search Optimizer (Geem et al., 2001).  Constraints on specific model parameters based on 15 

land cover type and introduction of lakes and reservoirs were used to improve physical process representation. Observed 

discharge data was separated into calibration, validation and testing periods. The difference between validation and testing 

periods is that validation results are seen and evaluated by the modeller in an iterative calibration process, while testing data 

are not used until the final model parameter values are set. 

3.1.2 Global Hydrological Models 20 

Global hydrological models considered in this study are conceptual rainfall-runoff models as presented in Table 1. Model 

state variables such as SWE for selected models and forcing datasets can be obtained from the eartH2Observe project Water 

Cycle Integrator (WCI) (EartH2Observe, 2017). 

3.2 Data 

3.2.1 Meteorological Data 25 

Meteorological stations are sparse in the study area, as they are across Northern Canada (Mekis and Vincent, 2011). Local 

meteorological stations data collected from Government of Canada Historical Climate Data records were reviewed to 
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determine consistency and completeness (ENR, 2016; Simpson, 2016). With the exception of the Yellowknife station, 

precipitation records for both rainfall and snowfall were, however, found to be incomplete or of short duration. Temperature 

records for several nearby stations shown in Figure 1 were found to be complete and suitable for comparison validation. 

 

Global re-analysis datasets generated as part of the eartH2Observe project were used as forcing data for the WFLOW-HBV 5 

model. The primary precipitation forcing dataset used is the Multi-Source Weighted-Ensemble Precipitation (MSWEP) 

available at a daily timestep from 1979-2015 at a resolution of 0.25° x 0.25°. MSWEP was created through combination of 

gauge, satellite and reanalysis data and includes a long term bias correction procedure based on discharge observations (Beck 

et al., 2016). Precipitation and temperature data from the Watch Forcing Data applied to ERA-Interim reanalysis data 

(WFDEI) were used at a daily timestep 1979-2012 at a resolution of 0.5° x 0.5° (Weedon et al., 2014). Potential 10 

Evapotranspiration (PET) for this study was selected as Penman Monteith calculated at a daily timestep at a 0.25°x 0.25° 

resolution based on eartH2Observe Water Resource Re-analysis 2 (WRR2) data.  

 

Available ground weather station data sources and long-term climate normals were used to validate the re-analysis datasets 

from eartH2Observe. Mean annual precipitation for the eartH2Observe datasets are comparable at the nearest gauge with 15 

long term records at Yellowknife. Undercatch corrected annual mean precipitation totals for Yellowknife were 377.7 mm, 

with MSWEP and WFDEI totalling 356.3 mm and 370.7 mm respectively (ENR, 2016). A comparison of monthly 

precipitation to undercatch corrected local datasets shows slightly better correlation and performance for MSWEP (y = 

0.93x, R² = 0.27) than WFDEI (y = 0.88x, R² = 0.25). Daily mean temperature data for several local stations were well 

correlated with WFDEI (Lower Carp Lake, R² = 0.98; Indin River, R² = 0.97) with low biases. 20 

3.2.2 Discharge Data 

Discharge in the Snare Watershed follows a distinct and highly seasonal pattern which is typical of the Sub-Arctic (Kokelj, 

2003). Low winter flows are followed by a large peak discharge due to snowmelt. In some years, rainfall in the late fall will 

cause a notable secondary peak before flow recession in the end of the year. Discharge is available both as a historic 

timeseries from as early as 1978 and in near real-time provided by the Water Survey of Canada (ENR, 2016, 2017) for the 25 

three hydrological stations presented in Figure 1. Although the period of record is different for each of the three stations, the 

annual water yields are well correlated between the three catchments helping to validate the rating curves and reported 

discharge rates. 
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3.2.3 In-situ SWE Data 

Measurement of SWE can be performed in-situ with accurate snow depth and density at point locations. However the 

resulting datasets have limited spatial and temporal coverage (Derkson et al., 2008).  The in-situ measurements, or snowpack 

surveys, are often collected near the end of the snow accumulation season to provide advance information for anticipated 

snowmelt volume. A long term record [1978-2016] of end of winter snowpack surveys is available at locations distributed 5 

across the Snare Watershed (GNWT, 2016). Snowpack surveys measurements contain inherent uncertainty related to site 

selection, sampling protocols and interpolation methods used to create spatial estimates. Despite these limitations, snowpack 

survey data is considered the most reliable SWE available in the study area. 

3.2.3 GlobSnow-2 SWE Data 

GlobSnow-2 SWE, hereafter referred to as GlobSnow, is a long term (1979-present) daily record of SWE covering the non-10 

mountainous areas of the Northern Hemisphere (Luojus et al., 2014). GlobSnow uses a Bayesian non-linear iterative 

assimilation approach with passive microwave measurements and ground weather station measurements to create a 25 km by 

25 km gridded SWE product (Takala et al., 2011). GlobSnow has limitations and uncertainty consistent with the 

measurement of SWE from passive microwave measurements leading to underestimation in tundra environments due to 

several contributing factors (Rees et al., 2007). Passive microwave algorithms provide limited measurement of melting snow 15 

as the presence of even small amounts of water in the snowpack results in an emissivity similar to land with no snow cover 

(Nolin, 2011). In GlobSnow, a microwave derived dry snow mask is first used to determine snow covered area and SWE 

retrievals are only retained for those areas determined to have snow cover. When snow is wet, the snow masking procedure 

underestimates the snow covered area. 

 20 

GlobSnow algorithm performance has been tested in Canada by comparing retrievals to in-situ measurements for a variety of 

Canadian land covers. The overall RMSE for comparison with Canadian data is 40 mm, although algorithm retrieval is poor 

for boreal forest snow where the SWE is greater than 150 mm (Takala, 2011). Sparsity of weather station snow depth 

measurements in boreal regions results in stronger weighting of microwave based retrievals in the GlobSnow algorithm, 

contributing to underestimation of SWE due to the volume scatter from dry snowpacks exceeding 150 mm.   25 

3.3 Snowmelt Volume 

Snowmelt volume was approximated using the local minimum method from the hydrograph stream flow separation program 

(HYSEP) implemented in MATLAB (Burkley, 2012). This is a mathematical technique that mimics manual methods for 

stream flow separation as opposed to an explicit representation of the physical processes (Sloto and Crouse, 1996). A further 

manual correction was used for secondary hydrograph peaks driven by late summer and fall rainfall events. A simple 30 
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exponential regression was used to estimate the recession curve (Toebes et al., 1969). The method applied in this study 

results in an annual mean contribution of SWE to total stream flow of 63%, with a standard deviation of 10%. These values 

of snowmelt contribution to streamflow are consistent with literature estimates (30-80%) from more detailed catchment 

studies (DDC, 2014; McNamara et al., 1998; Schelker et al., 2013; Stieglitz et al., 1999), if a little on the high side.  

3.3 Prediction of Snowmelt Volume and Peak Discharge from Maximum Annual SWE 5 

Prediction of spring streamflow is largely dependent on the accuracy of SWE estimates prior to snowmelt (Sospedra-Alfonso 

et al., 2016). Rank correlation analysis is used to compare maximum annual SWE to the corresponding spring snowmelt 

volume and peak discharge. Use of maximum annual SWE allows comparison between local and global model datasets, 

GlobSnow and in-situ measurements. Spearman’s rho is used as a non-parametric measure of the monotonicity (i.e. whether 

the trend is entirely increasing or decreasing) between datasets as calculated in Eq. (1) (Yue et al., 2002). 10 

𝑟𝑠 =   1 −
6∑ 𝑑𝑖

2

𝑛(𝑛2−1)
 𝑤ℎ𝑒𝑟𝑒 𝑑𝑖 = 𝑟𝑔(𝑋𝑖) − 𝑟𝑔(𝑌𝑖)         (1) 

where 𝑟𝑠  is Spearman’s rho and 𝑟𝑔(𝑋𝑖) is the rank of observation 𝑋𝑖 in a sample of size 𝑛. Spearman’s rho test includes a 

two-sided p-value for significance 

4 Results  

4.1 Discharge Simulations  15 

 

Graphical results for the testing period of the WFLOW-HBV model presented in Figure 2 show good overall model 

representation of discharge. From the graphical assessment, it appears that model results could be improved with slightly 

greater attenuation of streamflow. Modelled discharge in 2014 is anomalous with over prediction of the discharge volume 

due to snowmelt contribution to streamflow. Analysis of the in-situ data show that low snowpack SWE was recorded in 20 

snowpack surveys collected in 2014, though this is not reflected in the MSWEP forcing data. 

 

Results only from the testing period are shown graphically in Figure 2, while the performance statistics over the calibration, 

validation and testing periods are shown in Table 2. These statistics would generally be classified as good or very good 

calibration under the model evaluation guidelines defined by Moriasi et al. (2007).  25 

 

4.2  Snow Water Equivalent 

 

The accumulated SWE over the Snare Watershed has been measured by in-situ snowpack surveys and can be used to 

evaluate GlobSnow-2 and hydrological models. Figure 3 shows the quantity and timing of SWE accumulation and melt 30 
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patterns over the period of record. Each snowpack survey point is the spatial mean of a set of snowpack survey stations 

collected in the same field program. The line graphs represent the spatial mean of daily mean, maximum and minimum SWE 

estimates from GlobSnow-2, hydrological and land surface models. 

 

The comparison of the GlobSnow data with the in-situ SWE measurements in Figure 4, where the blue crosses are the 5 

observations taken in early spring while the red asterisks are the observations from late spring, shows GlobSnow tends to 

overestimate SWE in the early season and underestimate in the late season. Error is also correlated to the magnitude of the 

GlobSnow measurement (right hand figure). The assumption of a constant density of 0.24 g/cm³ in the GlobSnow retrieval 

algorithm contributes to this trend. The mean density in the Snare Watershed snow surveys is 0.21 g/cm³ with a standard 

deviation of 0.06 g/cm³ (GNWT, 2016). The assumption of constant density would lead to overestimation of SWE for 10 

freshly fallen snow and underestimation for mature snow packs.  

 

The high overall RMSE (45.1%) and Percent Bias (18.3%), showing under prediction by GlobSnow are consistent with a 

recent validation study of GlobSnow over Canadian boreal forest and tundra environments (Larue et al., 2017; Takala, 

2011). In this study, a key contributing factor to the high RMSE is that comparison is made with late season measurements 15 

where GlobSnow SWE retrievals have premature decline. The spatial distribution of RMSE and PBIAS in Figure 5 indicate 

better performance over the Northern tundra areas compared to Southern areas where boreal forest land cover dominates. 

The checkered pattern of the error statistics is due to the 25 km by 25 km resolution of the GlobSnow product. 

 

4.3 Prediction of Snowmelt Volume and Peak Discharge 20 

Maximum annual SWE is a key predictor of spring and summer streamflow rates. Rank correlation analysis provides 

evaluation the predictive power of measured and modelled SWE to snowmelt volume and peak discharge rates. Table 3 

shows results for Spearman’s rho (𝑟𝑠 ) and two sided p-test (𝑝), correlating the maximum SWE found in each of the 

dataset/model combinations considered, and the observed snowmelt volume and peak discharge. The last column provides 

the correlation to the SWE obtained from ground measurements. 25 

 

The selection of forcing data has a clear effect on correlation of model maximum annual SWE to snowmelt volume, peak 

discharge and in-situ data. MSWEP forcing precipitation has superior performance to WFDEI irrespective of the conceptual 

model used. The local WFLOW-HBV model forced with MSWEP is the best and only statistically significant (p < 0.05) 

predictor of snowmelt volume and peak discharge. This can be attributed to the calibration of the local model, while global 30 

models are generally uncalibrated.  GlobSnow has poor correlation to snowmelt volume, peak discharge and in-situ data 

which is consistent with expected limitations from SWE measurement with passive microwave measuring deep and late-

season snow packs.  
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5 Discussion 

5.1 Global re-analysis datasets for predicting streamflow, snowpack accumulation and melt 

Global re-analysis datasets applied in this study allow considerable gains in hydrological assessment in a high latitude 

watershed compared to what can be achieved with in-situ data. Local meteorological datasets are simply too short, 

inconsistent and spatially disperse to be applied in long term modelling. The use of hydrological models allows the 5 

estimation of hydrological state variables such as snowpack accumulation and streamflow using both local and global 

conceptual hydrological models.  

 

The local watershed model developed in this study, forced with MSWEP precipitation was calibrated to available streamflow 

records. The resulting calibrated model is able reliably and accurately model streamflow based on calibration, validation and 10 

testing statistical results. Local model maximum annual SWE was found to be a better predictor of snowmelt volume and 

peak discharge than snowpack survey data.  

 

In global hydrological models, which are not calibrated to streamflow data, MSWEP has better performance over the Snare 

Watershed in predicting snowmelt volume and peak discharge compared to WFDEI. The selection of forcing data is this 15 

study has a greater effect than the choice of conceptual hydrological model owing to the control over precipitation volumes. 

Study of streamflow in calibrated versions of the global hydrological models have also found superior performance using 

MSWEP (Beck et al, 2016).  

 

Limitations of conceptual models in high latitude watersheds include lack of important physical processes such as permafrost 20 

interactions, ice effects on rivers and lake outlets and complex processes in the snow-pack. Calibration of highly 

parameterized models such as WFLOW-HBV mask underlying physical processes and do not explicitly represent them. This 

limits applicability for certain types of assessment such as permafrost thaw with climate change, which will alter runoff 

processes (Duan et al., 2017). Incorporating additional remote sensing data, including land and lake cover can improve the 

spatial representation of physical processes and allow assessment based on land use changes. 25 

5.2 SWE measurement for operation and planning purposes 

SWE is used by operational water managers to predict the inflow volumes from snowmelt and anticipate peak discharge 

rates. Study results demonstrate that SWE measurement for application in hydrological forecasting is still problematic in the 

Snare Watershed. 

 30 
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In-situ measurement of SWE from snowpack survey provides an end-of-season snapshot measurement, and due to the long 

data record in the Snare Watershed allows comparison with previous years. Field data collection could be improved with 

strategies that consider topographical and vegetative characteristics of the watershed to improve and standardize site 

selection (Rees et al., 2014).  The recognition that while inter-annual variability of snowpack is high, distribution patterns are 

relatively consistent would improve SWE measurement due to typifying station measurements based on topographic relief.    5 

 

Snowpack SWE in the conceptual hydrological models forced by MSWEP and WFDEI global have comparable magnitudes 

to snowpack survey measurements. Given that conceptual models do not include sublimation, which is known to remove a 

large quantity of snowpack SWE, the MSWEP and WDFEI global re-analysis datasets tend to underestimate actual snowfall.  

This is difficult to verify as precipitation gauge measurements at high latitudes are known to have large under catch. 10 

Sublimation of snowpack SWE is also very difficult to measure and verify, particularly from remote sensing data 

(Petropoulos, 2013).  

 

GlobSnow is well suited to provide accessible, timely SWE data as supplementary information for water managers and for 

assimilation into operational modelling systems. Snow data assimilation for hydrological forecasting is an emerging field 15 

with application in operational water management systems (Huang et al., 2017; Montero et al., 2016). However, SWE 

products based on passive microwave such as GlobSnow under predict SWE of tundra and boreal environments present 

across Northern Canada (Larue et al., 2017; Takala, 2011).  Improvement of retrieval algorithms and the assimilation of in-

situ estimates can reduce error, though overcoming inherent limitations measuring deep (>150 mm) or wetted snowpack will 

require novel approaches. Study results indicate the assumption of a constant density used in GlobSnow is a source of error 20 

in the early and late periods of accumulation, and advancing over this assumption could help improve the SWE estimates 

from products such as GlobSnow.  

5.3 Global Re-analysis Datasets for Local Application 

To be of use in operational managers and planners, the global re-analysis datasets and hydrological models presented in this 

study must provide reliable data to inform decision making and decrease uncertainty. In the context of the Snare Watershed 25 

and snowmelt driven hydropower operations, the snowpack SWE is the predominant source of uncertainty. Current 

operation of the Snare Hydro System relies on local expert knowledge, historical records and surrogate hydrographs. These 

methods will be challenged by changes to local hydrology, snow duration and snowmelt quantity with climate change. 

 

The use of global re-analysis datasets helps in short term planning by allowing the development of more reliable and 30 

accurate hydrological models which form the basis of forecasting systems. Hydrological models developed with local data 

alone will have greater calibration parameter uncertainty and less rigorous validation. The calibrated WFLOW-HBV model 
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was integrated into the Delft-FEWS operational forecasting platform (Werner, 2013). The use of this established framework 

and forecasting tool can improve operator confidence around water release and operation within water license limits. Data 

products available in Near-Real Time such as MSWEP-NRT, which is under development at the time of writing, would 

allow the calibrated model to be initialized for forecasting. 

 5 

Study results demonstrate that SWE estimation for prediction of snowmelt volume and peak discharge is a persistent 

challenge. Choice of forcing data has a large effect compared to selection of conceptual model, and while global 

hydrological models can replicate the magnitude of end of season SWE, the difficultly is in accurately predicting inter-

annual variability. SWE estimation from passive microwave was found to be a poor predictor, which is consistent with a 

recent validation study of GlobSnow over Eastern Canada which concludes the product accuracy to currently be insufficient 10 

for hydrologic simulations (Larue et al., 2017).  SWE measurement for passive microwave has poor agreement with spring 

discharge volume, possibly due to algorithm errors at high SWE values (Rawlins et al., 2006).   A local calibrated 

hydrological model generated snowpack SWE that the more predictive of snowmelt volume and peak discharge than 

uncalibrated global models. 

 15 

The manual collection of end of-winter snowpack survey data is justified, as the study shows that ground data is a 

comparatively reliable predictor of snowmelt contribution to streamflow and peak discharge. Field measurement methods 

would increase the reliability of in-situ measurement, but would reduce the ability to compare to the existing historical 

record. 

 20 

The methods described in this study improve representation of the hydrological processes and forecasting application could 

allow a better operational strategy to be implemented. Global datasets, in particular meteorological reanalysis data are useful 

not only for broad scale assessment, but can be applied for accurate discharge modelling and development of a hydrological 

forecasting system. This has real and practical relevance for operational water management in the Sub-Arctic. 

6 Conclusions 25 

This study demonstrates that considerable gains in hydrological assessment and model performance for high latitude 

watersheds can be achieved with global re-analysis datasets and conceptual hydrological models. The findings of this study 

are relevant to operational water management in high latitude catchments with sparse meteorological data and to current 

scientific research in the estimation of SWE with global remote sensing and re-analysis data. The methods described in this 

study can be readily applied in the Canadian Sub-Arctic where watersheds do not have comprehensive meteorological data 30 

or operational hydrological models. 
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Application of global re-analysis datasets to a local, distributed conceptual model (WFLOW-HBV) results show that the 

spring snowmelt discharge can be predicted well in terms of timing and magnitude over a 30 year period. Model 

performance for discharge and select physical processes is improved through constrained parameter optimization, but it is 

also clear from the results that the calibrated HBV model parameters may compensate for cryosphere processes such as 

sublimation that are lacking in the model.  5 

 

This study highlighted the limitations of SWE derived from global re-analysis datasets and conceptual hydrological models 

to predict the volume of snowmelt and peak discharge rates. Comparison of global re-analysis datasets in the eartH2Observe 

project shows improved performance in MSWEP precipitation forcing compared to WFDEI for snowpack representation. 

MSWEP forcing data produced more realistic inter-annual snowpack SWE better able to predict snowmelt volume and peak 10 

spring discharge. This finding was consistent for five global conceptual hydrological models assessed over the local study 

area, demonstrating the importance of precipitation forcing data relative to conceptual model structure.  

 

SWE estimation for prediction of snowmelt volume and peak discharge is a persistent challenge. SWE products based on 

passive microwave such as GlobSnow under predict SWE in boreal and tundra environments, particularly in the late winter 15 

season prior to snowmelt. Improvement of retrieval algorithms and the assimilation of in-situ estimates can reduce error, 

though overcoming inherent limitations measuring deep (>150 mm) or wetted snowpack will require novel approaches. 

Study results indicate the assumption of a constant density used in GlobSnow is a source of error in the early and late periods 

of accumulation, and advancing over this assumption could help improve the SWE estimates from products such as 

GlobSnow. 20 

 

The conclusions in this study related to global re-analysis products including MSWEP, WFDEI and GlobSnow-2 are specific 

to the Snare watershed area and should not be broadly generalized to other catchments. For further study a gridded SWE 

product could be used for assimilation to improve spatial representation of the snowpack. Assimilation of remote sensing 

snow data is an active research field, but is beyond the scope of this study. Snow cover and extent would also provide a great 25 

deal of additional data, particularly regarding the timing of snowmelt.  

 

This study has demonstrated the utility of global re-analysis datasets for hydrological assessment in the data sparse Canadian 

Sub-Arctic. In the operational context of the Snare Hydro System, the length and breadth of hydrological assessment as 

presented here is much greater than could be achieved with local meteorological data. The continued development of these 30 

datasets and modelling frameworks is promising to help improve understanding of water resources in data sparse Northern 

regions in the face of climate change.   
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Figure 1: Snare Watershed Location in Northwest Territories, Canada 25 
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Figure 2: WFLOW-HBV discharge results for the testing period 

 

Figure 3: Daily Mean, Maximum and Minimum Daily SWE compared to Ground Measurements [1980-2012] 
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Figure 4: GlobSnow and Ground SWE Measurement Comparison 

 

Figure 5: Error from comparison of GlobSnow SWE and interpolated in-situ SWE [1980-2012] 

 5 

Table 1: Global Model and Process Summary 

Model Evaporation Snow Lake-

Reservoirs 

Routing Reference 

HTESSEL Penman- 

Monteith 

Energy Balance No CaMa-Flood (Dutra et al., 2009) 

JULES Penman-Monteith Energy Balance No No (Clark et al., 2011) 

PCR-

GLOBWB 

Hamon (Tier 1) or 

imposed as forcing 

Temperature Based 

Melt Factor 

Yes Travel-time 

Approach 

(Bierkens and Van 

Beek, 2009) 

W3RA Penman-Monteith Degree-Day No Cascading Linear 

Reservoirs 

(van Dijk et al., 2014) 

WaterGAP3 Priestley- 

Taylor 

Degree-day Yes Manning- 

Strickler 

(Flörke et al., 2013) 
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Table 2: WFLOW-HBV Discharge Statistical Results 

Variable 
Catchment 1 Catchment 2 Catchment 3 

Calibration Validation Testing Calibration Validation Testing Calibration Validation Testing 

Duration 

(yr) 
22 9 4 9 3 4 20 6 4 

Error Statistics 

NSE 0.84 0.68 0.80 0.88 0.68 0.59 0.83 0.70 0.67 

KGE 0.88 0.65 0.88 0.91 0.83 0.70 0.90 0.74 0.81 

PBIAS 

(%) 
-2.6 -15.1 6.0 -5.0 -6.5 0.5 -3.3 -15.2 3.4 

RSR 0.44 0.77 0.46 0.32 0.56 0.51 0.39 0.64 0.51 

 

Table 3: SWE, Snowmelt and Peak Discharge Rank Correlation Analysis 

Model Forcing Dataset 
Snowmelt Volume Peak Discharge Ground SWE Measurement 

𝑟𝑠  p 𝑟𝑠  p 𝑟𝑠  p 

WFLOW-HBV MSWEP 0.52 0.004 0.54 0.003 0.53 0.004 

HTESSEL MSWEP 0.47 0.011 0.48 0.010 0.55 0.002 

JULES MSWEP 0.47 0.012 0.48 0.010 0.62 0.000 

WaterGap MSWEP 0.34 0.076 0.36 0.063 0.67 0.000 

HTESSEL WFDEI 0.25 0.193 0.25 0.201 0.04 0.834 

JULES WFDEI 0.23 0.243 0.23 0.250 0.01 0.976 

WaterGap WFDEI 0.17 0.382 0.13 0.509 0.15 0.440 

W3RA WFDEI 0.15 0.451 0.10 0.601 0.16 0.409 

PCR-GLOB WFDEI 0.14 0.465 0.12 0.532 0.15 0.438 

GlobSnow 
Passive Microwave / 

Snow Gauge Data 
0.14 0.484 0.18 0.360 0.18 0.371 
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